PhD research proposal

This project is supported by the CNRS - Mission pour les initiatives transverses et interdisciplinaires

All-Dielectric Metamaterials for Zero-Index-Photonic: Negative Index and Near-Zero Index Materials at Terahertz

Éric Akmansoy
Département Photonique

General framework

Metamaterials have opened a new field in physics and engineering. Indeed, these artificial structured materials give rise to unnatural fascinating phenomena such as negative index, sub-wavelength focusing and cloaking. Metamaterials also exhibit near-zero refractive index [1]. These open a broad range of applications, from the microwave to the optical frequency domain. Metamaterials have now evolved towards the implementation of optical components [2].

We consider All-Dielectric Metamaterials (ADM) which are the promising alternative to metallic metamaterials, because they undergo no ohmic losses and consequently benefit of low energy dissipation and because they are of simple geometry [3]. They consist of high permittivity dielectric resonators involving Mie resonances. We have experimentally demonstrated negative effective permeability and/or permittivity by the means of all-dielectric metamaterials [4]. Previously, we have also demonstrated a negative index all-dielectric metamaterial [5].

Metamaterials that exhibit Near-Zero Index metamaterials (NZI) have a large number of applications including wavefront engineering, directivity and gain enhancement of antennas, electromagnetic cloaking, phase matching for nonlinear applications, unidirectional transmission, defect waveguides, Zero-index Materials (ZIM) cavities, . . . [6]

The main feature of Zero Index Materials is that the phase distribution of the EM field is nearly constant, because of the decoupling of the electric and the magnetic fields, that results in the “decoupling of the “spatial” (wavelength) and the “temporal” (frequency)” [1]. Zero Index Photonics has consequently fundamental and technological implications on different subfields of optics and nanophotonics. Antennas systems and optical components operating in the terahertz range are the targeted devices.

Recently, we have numerically demonstrated a metadevice, namely, a metalens that focuses an incident plane wave and is less than one and a half wavelength thick. Its focal length is only a few wavelengths and the spot in the focal plane is diffraction-limited. [7]. We have also addressed the role of the coupling of the modes of Mie resonances in an all-dielectric metamaterial so as to achieve negative index and Near-Zero Index at terahertz frequencies (see fig.1) [8].

Work Plan

During this PhD thesis, All-Dielectric Metamaterials will be numerically designed; Negative Index and Near-Zero Index will be addressed. The All-Dielectric Metamaterials will also be characterized in the THz frequency range. The PhD student can also get involved in the fabrication via a PhD scholarship.

1. via a PhD scholarship
2. eric.akmansoy@u-psud.fr
processes. In the first instance, our aim is to demonstrate near-zero index and negative index. Then antennas systems and various photonics components will be considered.

This work takes place within the framework of a group of scientists of different disciplines (chemists, material scientists and physicists) [9] which deals with All-Dielectric Metamaterials design, high dielectric material fabrication, structuration and characterization [9].

Figure 1 – Spatial mode coupling: frequency of the first two modes of Mie resonances in function of the distance p_2 between two resonators which is half the lattice period l_p. It shows the mode degeneracy. The shaded area corresponds to negative value of the effective index n_{eff}. Near-Zero Index is attainable. [8]

Bibliography